ILLUSTRATIVE SOLUTION OF A MIXED PROBLEM
OF STEADY-STATE HEAT-CONDUCTION THEORY
FOR A HALF-PLANE WITH A BOUNDARY CONDITION
OF THE THIRD KIND

B. A, Vasgil'ev UDC 517,946

A mixed boundary-value problem of potential theory is treated for a half-plane in the case in
which two equal parts of the boundary are at constant but different temperatures, while there
is heat transfer in accordance with Newton's law over the rest of the surface.

Formulation of the Problem

We are to find the solution of the Laplace equation

Aw=0, y>0, —oco <x <L+ 00 (1)
under the boundary conditions
u=T, =0, -l <ax<—a, u=T, y=0, a < x|, 2)
-——%u——}-huzo, y=0, xj<a, x{>1 {3}
Y

and conditions at infinity,
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where A, h> 0, Ty, and Ty are constants, and we have 0 < @ < 1, We seek a solution of problem (1)-(3) as the
sum of two functions,
u=u"4+u", (4)
where
W Y=u(—x4), 4 (—x y=—u (x5 y).
Each of the terms in (4) satisfies Eq. (1) and condition (3); condition (2) is written

WF=T* y=0,a<x<]1,

where
YR L o T S | Sl (5)
2 2
To solve problem (1) we introduce the complex potential
ORA=f@+f @ z2=x4iy, y20, {6)
where*

(@) =ut + vt

*Below we omit the "=."
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Integral Fredholm Equations for the Imaginary Part
of the Complex Potential

Using the result of [2] we can easily find integral equations for the functions v'(x) and v (x) {3]:
I |

vt (x) + % S‘ vt (HIn (1 —-a,z) (xz — 1)

VE—o) (1= +1 (F—o (1 —B)°

. 1—x 2 ) l/1~—-x2
= hT (l—a)[ = 3 aresin. P +

by 2 , 1—xr 2 sl
v (a)—E arc sin l/—ljoz_z_+v ) - arccos T )

where ¢ = x = 1, v (—x) = —v' (x).
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=hT—(1,_a)[ i:; _ F(x;; k) ]+v-(a) F(q;(;_ B 1) [1_ F(\lb;; k)], ()

a<s< 1, v (x) =v (—x),
where

N g . 1 —x?
(pzarcsml/ l_az—-,lp—_—arCSm T
F(¢; k) is the elliptic integral of the first kind of modulus k =v1 — a2, k' = o; K = K(k) is the complete el-
liptic integral, and H(W) is the Jacobi eta function.

We seek solutions of Eqgs. (7) and (8) in the form
v {x) = v, (x) - v () A(_x)—{-n (1) B (). . (9

The functions vy(x), A(x), and B(x) are found by the method of successive approximations as series in powers
of h[1]. The complex potential (6) is determined within the constant quantities wWa) and v(1):

@) =F@ +v@ @ +vd) 6. (10)
Here

1
fo@=rT (1 —a)y(®)+ A f v ()G Ydt

1
ie=—v@+h SA(t)G(z; 1) dt;
1

LEA=v@+h j Bit)G(z b dt;
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Zy(@; k) = E(¢; k) —(E/K) F(¢; k) is the zeta function, E(¢; k) is the elliptic integral of the second kind, .
and E = E(k) is the complete elliptic integral. Setting z = «in (10), we find a system of algebraic equations

Zig; Byy (@, Imz20;
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for the constants v(a) and v(1):
Ref(a) = Refy () + v(a) Ref, (@) + v (1) Ref, (@),
Imf(e) =1Im f, (@) + v{a) Imfy (@) + v(l) Imf, (o).

Solving system (11) by the method of successive approximations, we find expansions for W «) and (1) which
conv rge at sufficiently small values of h:

(11)

@ hein K—F + 0 (h),
T n— 2 _c}
RV —at
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U+(1) — + 2 . 2hE1(k) : %O(h’),
T* 0z 1 “;*2_____C ‘
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where
w2 /2

E, (k) = j E(p; k) do; Fy(k) = S F(p; k) dgy K" = K(&),
0 0

and C = 0.577215... is the Euler constant.

Using expansions (12), we can directly calculate the total heat fluxes across the various parts of the
boundary: [—«, +d], [—-1; +1], [e; 1], [1; ©). For example, the total heat flux across part [o; 1] is

i
Q _ T,+T, 2 B
K, 2 _ 2
[‘“ PEYd g C}
E, (k) o). To—T, (K
—T 5 2 +O(h)}’f‘_~—2———{°—k7—+
[m——-—————._—q]
AY 1 —a?
2hF, ()
+ 20 L omrmpyl — a1 — a),
o D)} — AT, (1 —2) 13)

where K is the thermal conductivity and @ is the total heat flux.
We note, in conclusion, that the nature of the analytic dependence of the solutions on the parameter h
in this problem is quite different from that in the classical case of [1].
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